skip to main content


Search for: All records

Creators/Authors contains: "Swenson, Jennifer J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Aim

    As one of the most diverse and economically important families on Earth, ground beetles (Carabidae) are viewed as a key barometer of climate change. Recent meta‐analyses provide equivocal evidence on abundance changes of terrestrial insects. Generalizations from traits (e.g., body size, diets, flights) provide insights into understanding community responses, but syntheses for the diverse Carabidae have not yet emerged. We aim to determine how habitat and trait syndromes mediate risks from contemporary and future climate change on the Carabidae community.

    Location

    North America.

    Time period

    2012–2100.

    Major taxa studied

    Ground beetles (Carabidae).

    Methods

    We synthesized the abundance and trait data for 136 species from the National Ecological Observatory Network (NEON) and additional raw data from studies across North America with remotely sensed habitat characteristics in a generalized joint attribute model. Combined Light Detection and RAnging (LiDAR) and hyperspectral imagery were used to derive habitat at a continental scale. We evaluated climate risks on the joint response of species and traits by expanding climate velocity to response velocity given habitat change.

    Results

    Habitat contributes more variations in species abundance and community‐weighted mean traits compared to climate. Across North America, grassland fliers benefit from open habitats in hot, dry climates. By contrast, large‐bodied, burrowing omnivores prefer warm‐wet climates beneath closed canopies. Species‐specific abundance changes predicted by the fitted model under future shared socioeconomic pathways (SSP) scenarios are controlled by climate interactions with habitat heterogeneity. For example, the mid‐size, non‐flier is projected to decline across much of the continent, but the magnitudes of declines are reduced or even reversed where canopies are open. Conversely, temperature dominates the response of the small, frequent flierAgonoleptus conjunctus, causing projected change to be more closely linked to regional temperature changes.

    Main conclusions

    Carabidae community reorganization under climate change is being governed by climate–habitat interactions (CHI). Species‐specific responses to CHI are explained by trait syndromes. The fact that habitat mediates warming impacts has immediate application to critical habitat designation for carabid conservation.

     
    more » « less
  2. Free, publicly-accessible full text available July 1, 2024
  3. Blonder, Benjamin (Ed.)
    Free, publicly-accessible full text available May 1, 2024
  4. Tree fecundity and recruitment have not yet been quantified at scales needed to anticipate biogeographic shifts in response to climate change. By separating their responses, this study shows coherence across species and communities, offering the strongest support to date that migration is in progress with regional limitations on rates. The southeastern continent emerges as a fecundity hotspot, but it is situated south of population centers where high seed production could contribute to poleward population spread. By contrast, seedling success is highest in the West and North, serving to partially offset limited seed production near poleward frontiers. The evidence of fecundity and recruitment control on tree migration can inform conservation planning for the expected long-term disequilibrium between climate and forest distribution. 
    more » « less
  5. Abstract The relationships that control seed production in trees are fundamental to understanding the evolution of forest species and their capacity to recover from increasing losses to drought, fire, and harvest. A synthesis of fecundity data from 714 species worldwide allowed us to examine hypotheses that are central to quantifying reproduction, a foundation for assessing fitness in forest trees. Four major findings emerged. First, seed production is not constrained by a strict trade-off between seed size and numbers. Instead, seed numbers vary over ten orders of magnitude, with species that invest in large seeds producing more seeds than expected from the 1:1 trade-off. Second, gymnosperms have lower seed production than angiosperms, potentially due to their extra investments in protective woody cones. Third, nutrient-demanding species, indicated by high foliar phosphorus concentrations, have low seed production. Finally, sensitivity of individual species to soil fertility varies widely, limiting the response of community seed production to fertility gradients. In combination, these findings can inform models of forest response that need to incorporate reproductive potential. 
    more » « less
  6. McGlinn, Daniel (Ed.)
  7. Despite its importance for forest regeneration, food webs, and human economies, changes in tree fecundity with tree size and age remain largely unknown. The allometric increase with tree diameter assumed in ecological models would substantially overestimate seed contributions from large trees if fecundity eventually declines with size. Current estimates are dominated by overrepresentation of small trees in regression models. We combined global fecundity data, including a substantial representation of large trees. We compared size–fecundity relationships against traditional allometric scaling with diameter and two models based on crown architecture. All allometric models fail to describe the declining rate of increase in fecundity with diameter found for 80% of 597 species in our analysis. The strong evidence of declining fecundity, beyond what can be explained by crown architectural change, is consistent with physiological decline. A downward revision of projected fecundity of large trees can improve the next generation of forest dynamic models.

     
    more » « less